		Table 0-2. Juli	mary information for re	meur		echnolo	gies								
LNAPL technology	Technology Group / Objective [a]	Advantages	Disadvantages [b]		cable gy [c]	Applica zone		Applica of LN/	Potential time frame [f]					Appendix A reference table numbers	
	PC			F	С	U	S	LV/LS	HV/HS	VS	S	М	L	VL	
Excavation		Proven, 100% removal of LNAPL mass possible	Accessibility, depth limitations, waste disposal	F	С	U	S	LV/LS	HV/HS	VS					1
Skimming (LNAPL only)	MR MC	Proven	Limited to practicably recoverable LNAPL fraction, spacing, ROI [g]		С		S	LV/LS	HV/HS			М	L		2
Vacuum enhanced skimming (LNAPL & vapor)		Proven, vapor control, volatile depletion, enhance aerobic bio	Limited to mobile and recoverable LNAPL	(F)	с	U	S	LV/LS	HV/HS			М	L		3
Total liquid extraction (LNAPL & water)	MR MC	Proven, hydraulic control, expose trapped LNAPL	Limited to mobile and recoverable LNAPL, multiple fluid streams to treat/dispose		с		S	LV/LS	HV/HS			М	L		4
Multi phase extraction (MPE) (LNAPL, water & vapor)	MR MC	Proven, hydraulic control, vapor control, expose trapped LNAPL, volatile depletion, enhance aerobic bio, treat residual LNAPL	Generated fluids separation, multiple fluid streams to treat/dispose	(F)	С	U	S	LV/LS	HV/HS		S	М			5
Water flooding (incl. hot water flooding)	PC MR MC	Recover submerged LNAPL	Limited to mobile and recoverable LNAPL, hydraulic control required, homogeneity, flood sweep efficiency [h]		С		S	LV/LS	HV/HS		s				6
Surfactant-enhanced subsurface remediation (SESR)	PC MR MC	Mobilize residual LNAPL	Hydraulic control required, dissolved COCs [i] treatment, homogeneity, water treatment, sweep efficiency, chemical residuals		С		S	LV/LS	HV/HS	VS	S				7
Cosolvent flushing		Mobilize/dissolve residual LNAPL	Hydraulic control required, vapor generation, water treatment, sweep efficiency, chemical residuals		с		S	LV/LS	HV/HS	VS	s				8
Steam injection	MR MC	Proven	Vapor control, access, sweep efficiency, energy required	(F)	С	U	S	LV/LS	HV/HS	VS	s				9
Thermal conduction heating	MR MC	Proven	Vapor control, energy required, spacing, access	F	С	U	S	LV/LS	HV/HS	VS	S				10
Electrical resistance heating		Proven	Vapor control, energy required, spacing, access	F		U	S	LV/LS	HV/HS	VS	S				11
In-situ smoldering	MR MC	Able to treat heavy hydrocarbons	Vapor control, spacing, access		с	U	S	LV/LS		VS	s				12
Air sparging/ soil vapor extraction (AS/SVE)	MR MC	Proven, vapor control	Spacing, energy required	(F)	С	U	S		HV/HS		S	М			13
Biosparging/ bioventing	PC MR MC	Proven, lower energy	Potential for vapor migration	(F)	с	U	S	LV/LS	HV/HS			М	L		14
In situ chemical oxidation (ISCO)	PC MR MC	Minimal infrastructure	Vapor generation, rebound, spacing, delivery efficiency (ROI)		С	U (ozone oxidant)	S		HV/HS	VS	S				15
Enhanced anaerobic biodegradation	MR MC	Accelerate ambient biodegradation, minimal infrastructure	Spacing, delivery efficiency (ROI)		С		S	LV/LS	HV/HS				L	VL	16
Natural source zone depletion (NSZD)	MR MC	No disruption, low carbon footprint	Regulatory acceptance emerging	F	с	U	S	LV/LS	HV/HS					VL	17

Table 6-2. Summary information for remediation technologies

Activated carbon	MR MC	infrastructure,	Spacing, delivery efficiency (ROI); longer-term degradation unproven	F	С		S		HV/HS	VS	S			18
Phytotechnology	PC MR MC		Limited to root zone depth, acclimation period	F	с	U	S	LV/LS	HV/HS			L	VL	19
Physical or hydraulic containment	MR MC	Proven	Accessibility, depth and geologic limitations, only addresses migrating LNAPL	F	с		S	LV/LS	HV/HS				VL	20
In situ soil mixing (stabilization)	PC MR MC		Accessibility, depth limitations	F	с	U	S	LV/LS	HV/HS	VS	S			21

a. Mass removal (MR), phase change (PC) or mass control (MC). MR and MC are technologies to address saturation concerns; PC technologies address compositional concerns. b. Any of these technologies may have particular state-specific permitting requirements. Check with your state regulatory agency.

c. F = fine (clay to silt), C = coarse (sand to gravel). (F)=may be useful for silt but not clay.

d. U = unsaturated zone, S = saturated zone. e. LV/LS = low volatility, low solubility, medium or heavy LNAPL (e.g., weathered gasoline, diesel, jet fuel, fuel oil, crude oil); HV/HS = high volatility, high solubility, light LNAPL with significant

percentage of volatile or soluble constituents (e.g., gasoline, benzene); > residual req = requires LNAPL saturation greater than residual.

f. VS = Very short = <1 year; S = Short = 1-3 year; M = Medium = 2-5 years; L = Long = 5-10 years; VL = Very long = >10 years.

g. ROI = radius of influence.

h. Sweep efficiency is analogous to ROI, but injection technology refers to effectiveness of injectate dispersal (sweep).

i. COC = constituent of concern.